Documentation for zFacts.com

zFacts on ethanol

See yellow highlights on the following page(s).

Fact: Total US GHG emissions in 2004 = 7122 Tg

Source: US Department of Energy, Annual Energy Review, 2005, Table 12.1. (Google this title to find complete document.)

Notes: See p. 339 (PDF p.2) below. Due to high oil prices, fossil fuel use increased little in 2005, and declined in 2006. Consequently GHG emissions must have remained fairly constant.

	Greenhouse Gases				Greenhouse Gases, Based on Global Warming Potential ¹				
	Carbon Dioxide ^{2,3}	Methane	Nitrous Oxide	HFCs PFCs SF6	Carbon Dioxide ²	Methane	Nitrous Oxide	HFCs PFCs SF6	Total
Year	Million Metric Tons of Gas				Million Metric Tons Carbon Dioxide Equivalent ²				
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	4,824.7 4,704.3 4,448.8 4,408.0 4,655.8 4,638.3 4,642.5 4,800.2 5,012.6 5,105.8 8,5,002.3 8,4,953.0 8,5,067.8 8,5,183.0 8,5,259.0 8,5,312.1 8,5,259.0 8,5,312.1 8,5,63.0 8,5,598.1 8,5,677.9 8,5,845.5	28.6 29.2 29.4 29.1 29.8 30.0 29.4 29.9 30.1 30.2 F31.4 R31.3 R31.5 R30.4 R30.4 R30.4 R30.4 R30.4 R29.7 R29.8 R29.7 R29.7 R20.7 R29.7 R29.7 R200	1.0 1.0 1.0 0.9 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1		4,824.7 4,704.3 4,448.8 4,408.0 4,655.8 4,638.3 4,642.5 4,800.2 5,012.6 5,105.8 R5,002.3 R4,953.0 R5,067.8 R5,183.0 R5,259.0 R5,549.7 R5,549.7 R5,598.1 R5,677.9 R5,845.5	658.0 671.1 676.8 669.9 684.5 689.7 676.5 688.3 692.0 693.8 ^R 721.4 ^R 720.7 ^R 723.6 ^R 700.2 ^R 698.9 ^R 699.9 ^R 675.8 ^R 675.2 ^R 654.2 ^R 654.2 ^R 654.2 ^R 642.2 ^R 639.8	287.0 292.0 282.6 270.2 294.0 330.7 323.8 323.4 316.9 332.8 ^R 332.8 ^R 337.0 ^R 342.6 ^R 349.7 ^R 349.5 ^R 374.5 ^R 374.5 ^R 374.5 ^R 357.6 ^R 358.0 ^R 349.1 ^R 348.8 ^R 347.1 ^R 343.5	70.4 74.0 55.4 67.1 75.5 70.5 75.0 77.8 91.3 94.5 88.1 ^R 79.9 ^R 82.2 ^R 68.1 ^R 87.5 ^R 88.1 ^R 79.9 ^R 82.2 ^R 66.1 ^R 87.5 ^R 94.3 ^R 114.3 ^R 114.3 ^R 114.3 ^R 114.3 ^R 114.3 ^R 114.3 ^R 114.1	5,840.0 5,741.3 5,463.7 5,415.3 5,709.9 5,729.3 5,717.8 5,889.8 6,112.8 6,226.9 F6,148.8 F6,096.1 F6,223.2 F6,318.8 F6,419.9 F6,443.9 F6,443.9 F6,647.7 F6,709.3 F6,670.8
2000 2001 2002 2003 <mark>2004^P</mark>	^R 5,785.5 ^R 5,808.5 ^R 5,871.8 5,973.0	^R 27.2 ^R 27.2 ^R 27.6 27.8	1.2 1.1 1.1 1.1 1.2		^R 5,785.5 ^R 5,808.5 ^R 5,871.8 5,973.0	^R 625.8 ^R 626.2 ^R 633.9 639.5	R338.8 R335.1 R335.2 353.7	R133.9 R143.1 R142.4 155.9	^R 6,884.1 ^R 6,912.9 ^R 6,983.2 (7,122.1

Table 12.1 Emissions of Greenhouse Gases, 1980-2004

¹ Emissions of greenhouse gases are weighted based upon their relative global warming potential (GWP), with carbon dioxide equal to a weight of one. The use of updated estimates of GWP resulted in a number of revisions to previously published data. It is also important to note that revisions in estimated emissions result from revisions in energy consumption as well.

² Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44.

³ Carbon dioxide data in this table differ from those for the United States in Table 11.19 due to: the exclusion of emissions from international bunker fuels consumption; the inclusion of emissions from geothermal power generation, cement production and other industrial processes, and municipal solid waste combustion; and the inclusion of data for the U.S. Territories.

R=Revised. P=Preliminary. — = Not applicable because these gases cannot be summed in native units.

Notes: • HFCs = hydrofluorocarbons; PFCs = perfluorocarbons; and SF₆ = sulfur hexafluoride. • Emissions are from anthropogenic sources. "Anthropogenic" means produced as the result of human activities, including emissions from agricultural activity and domestic livestock. Emissions from natural sources, such as wetlands and wild animals, are not included. • Because of the continuing goal to improve estimation methods for greenhouse gases, data are frequently revised on an annual basis in keeping with the latest findings of the international scientific community. • Totals may not equal sum of components due to independent rounding.

Web Page: For related information, see http://www.eia.doe.gov/environment.html.

Sources: **1990 and 1996-2004**: Energy Information Administration (EIA), *Emissions of Greenhouse Gases in the United States 2004* (December 2005), Tables ES1 and ES2. **All Other Data:** EIA, *Emissions of Greenhouse Gases in the United States*, annual reports and unpublished revisions.